The first integral method to some complex nonlinear partial differential equations
نویسندگان
چکیده
منابع مشابه
global results on some nonlinear partial differential equations for direct and inverse problems
در این رساله به بررسی رفتار جواب های رده ای از معادلات دیفرانسیل با مشتقات جزیی در دامنه های کراندار می پردازیم . این معادلات به فرم نیم-خطی و غیر خطی برای مسایل مستقیم و معکوس مورد مطالعه قرار می گیرند . به ویژه، تاثیر شرایط مختلف فیزیکی را در مساله، نظیر وجود موانع و منابع، پراکندگی و چسبندگی در معادلات موج و گرما بررسی می کنیم و به دنبال شرایطی می گردیم که متضمن وجود سراسری یا عدم وجود سراسر...
New Exact Solutions of Some Nonlinear Systems of Partial Differential Equations Using the First Integral Method
and Applied Analysis 3 P(X, Y) = ∑ m i=0 a i (X)Y i is an irreducible polynomial in the complex domain C[X, Y] such that P [X (ξ) , Y (ξ)] = m ∑ i=0 a i (X (ξ)) Y i (ξ) = 0, (13) where a i (X), (i = 0, 1, 2, . . . , m) are polynomials of X and a m (X) ̸ = 0. Equation (13) is called the first integral to (12a) and (12b). Due to the Division Theorem, there exists a polynomial h(X) + g(X)Y in the c...
متن کاملTopological soliton solutions of the some nonlinear partial differential equations
In this paper, we obtained the 1-soliton solutions of the symmetric regularized long wave (SRLW) equation and the (3+1)-dimensional shallow water wave equations. Solitary wave ansatz method is used to carry out the integration of the equations and obtain topological soliton solutions The physical parameters in the soliton solutions are obtained as functions of the dependent coefficients. Note t...
متن کاملExact travelling wave solutions for some complex nonlinear partial differential equations
This paper reflects the implementation of a reliable technique which is called $left(frac{G'}{G}right)$-expansion ethod for constructing exact travelling wave solutions of nonlinear partial differential equations. The proposed algorithm has been successfully tested on two two selected equations, the balance numbers of which are not positive integers namely Kundu-Eckhaus equation and Derivat...
متن کاملThe First Integral Method for Solving a System of Nonlinear Partial Differential Equations
We apply the first integral method to study the solutions of the variant Boussinesq and the nonlinear Drinfeld-Sokolov systems. This method is based on the theory of commutative algebra. The new idea in this paper is to find the solution of a system of nonlinear partial differential equations using the first integral method.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Computational and Applied Mathematics
سال: 2011
ISSN: 0377-0427
DOI: 10.1016/j.cam.2011.02.021